Valmet: Shock Pulse Generator Update

CIBO May 2024

Agenda

- Background
- Applications
- Cleaning and system setup
- CO₂ reduction
- Milano case study 1
- Silbitz case study 2
- Biomass case study 3
- Future installs
- Key takeaways

Technology Origin

- 3rd generation is comprehensive step forward utilizing Shock Pulse Generators as mechanism for cleaning
- Technology developed and patented in 2009 by Explosion Power GmbH
- Broad application for utility and industrial boiler designs
- Ability to clean from upper furnace through air preheaters
- Over 1200 units installed at over 150 facilities worldwide
- Valmet has a distribution agreement with Explosion Power for North America

Application Range Percent of delivered SPGs

Application Range

Main Cleaning Mechanism of the Shock Pulse

Impact-sound vibration

- Induction of an impacted-sound vibration within the fouling
- Generation of tension and compressive stress
- Initiation of cracks inside the fouling; Support of the fouling removal.

Pulling and suction effect

- According to the Friedlander wave form the shock peak is followed by a zone with negative pressure
- This pulling and suction effect promotes the removal of the fouling

Short-term vibration

- A short-term vibration of the tube-bundle is initiated by the shock wave
- This supports removal and cleaning effect

System Setup SPGr

SPG Advantages

- Most efficient boiler cleaning nevertheless gentle towards boiler tubes (no abrasion)
- Lower flue gas temperatures
- Higher boiler efficiency
- Higher plant availability due to extended period of operation
- Less cleaning required during boiler shutdowns
- Fast and easy installation

Regular Sootblower operation

5 months after only SPGs

Environmental Benefits

Eliminating Sootblower Steam in a Recovery Boiler

Background

- 74 total sootblowers
- 70,000 lb/hr of sootblower steam= 932,000 MMBTU/year
- SPG natural gas use= 500 MMBTU/year, air compressor = 80.2 MMBTU/year

• If all sootblowers are replaced...

- 6.8% reduction in energy cost/salable Ton paper board (932,000 MMBTU/year)
- 12% reduction in fossil CO₂/salable Ton paper board (53,000 T CO₂/year)
- 7.5% reduction in RB flue gas volume to Precipitator
- 0.5% reduction in mill water usage (75 MGal/year)

Waste to energy (WtE) plant - Milano Case 1 Background

¹⁶ Shock Pulse Generator SPGr16 at side wall

Boiler data

- 3 identical boilers
- Steam production: 190 KPPH per boiler
- Radiation pass width= 28.2 m
- Horizontal pass width= 20.3 m
- Shock Pulses: ca. 36 per day, in Mixed Mode operation

WtE Plant – Milano Case 1 6 months period

WtE Plan A2A- Milano Case 1 Results Summary

- 1 8.6% Increase in steam
- **17.9%** Decrease in flue gas max dp
- 20-30% Reduced rapping
- Decreased manual cleanings per year from up to 8 to 1
- **1** More stable operation

	the second se	
	2021	2023
Live steam	77.9 t/h	84.6
	171.7 Klb/hr	186.5 Klb/hr
Flue gas dp	2.0 mbar	1.8 mbar
	0.8 inwc	0.7 inwc
Flue gas dp (max)	3.0 mbar	3.2 mbar
	1.2 inwc	1.3 inwc

Biomass Boiler Plambeck Holding GmbH - Silbitz (DE) Case 2 Background

- 62 KPPH steam capacity, 667 psig, 800°F
- Boiler width: 13 ft
- Very good cleaning in furnace. Buildup that would fall and damage the grates was reduced.
- Flue gas temperature was reduced
- Eliminated the need for manual cleaning
- The sootblower operation was reduced

Silbitz Furnace Case 2 Results

Furnace pass slagging after 10 weeks of operation

Furnace pass slagging after 12 weeks of operation with a Shock Pulse Generator (SPG)

Biomass Boiler Case Study 3

- 6-month trail of EG10XL
- Unit would be used to clean a 110MMBTU Biomass Thermal Oil Heater
- Area of worst fouling occurs at crossover from radiant to convective section (marked with circle).
- Performance of boiler would be judged by increase in draft in convective section

Draft Pressure Results

Biomass Case Study 3

MMBtu Output Results Biomass Case Study 3

Baseline 3 — Trial Run 2 — Trial Run 3

Results Summary Biomass Case Study 3

- Trial 2: Unit ran for 142 days, average of 85 MMBtu average
- Trial 3: Unit ran for 62 days at 95 MMBtu average which is a 72% increase in runtime at a higher output
- Unit is still operating today

Looking Forward...

Black Liquor Recovery Boiler

Waste to Energy Boiler

Key Takeaways

- Improved cleaning efficiency compared to other cleaning technologies; Higher boiler efficiency due to lower exhaust temperature
- Higher plant availability
- Less unplanned shutdowns for cleaning
- No thermal abrasion of boiler pipes
- Reduce sootblowers and steam consumption
- Improved CO₂ plant performance and lower environmental impact
- Opportunity in many different types of applications

Thank You!

For more information contact...

- Sarah Henke: Product Manager
 - Sarah.Henke@valmet.com
 - 919-454-3441
- Aaron Heidenreich: Project/Proposal Manager
 - <u>Aaron.Heidenreich@valmet.com</u>
 - 815-541-2114

